'芽黄'红瑞木炭疽病病原菌的分子鉴定

罗卿权1,2

(1. 上海市园林科学规划研究院植物保护研究所,上海 200232; 2. 上海市困难立地绿化工程技术研究中心,上海 200232)

摘要 '芽黄'红瑞木炭疽病在上海普遍发生。本研究从上海迪士尼园区采集疑似炭疽病的红瑞木病叶,进行了分 离培养,获得2种培养形态的炭疽菌,致病性测定证明其为致病菌。联合核糖体转录间隔区、3-磷酸甘油醛脱氢 酶、钙调蛋白和β微管蛋白2多基因序列,使用最大似然法和贝叶斯分析法分别构建了多基因系统进化树。结果显 示,分离获得的2株炭疽菌菌株分别与暹罗炭疽菌 Colletotrichum siamense 和胶孢炭疽菌 C. gloeos porioides 聚集在 一个分支,辅以形态学特征,鉴定引起'芽黄'红瑞木炭疽病的病原菌为暹罗炭疽菌和胶孢炭疽菌,这是国内关于红 瑞木炭疽病的首次报道。

关键词 红瑞木; 暹罗炭疽菌; 胶孢炭疽菌; 多基因; 致病性 中图分类号: S 432.1, S 436.85 文献标识码: A DOI: 10.16688/j.zwbh.2019304

Molecular identification of *Colletotrichum* species causing anthracnose disease of *Cornus alba* 'Bud's Yellow'

LUO Qingquan^{1,2}

(1. Shanghai Academy of Landscape Architecture Science and Planning, Institute of Plant Protection, Shanghai 200232, China; 2. Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China)

Abstract The anthracnose disease of *Cornus alba* 'Bud's Yellow' is widespread in Shanghai. In this study, two different types of strains were isolated from infected *C. alba* 'Bud's Yellow' leaves collected from Shanghai Disney with anthracnose symptoms, which were confirmed as pathogenic agents by infection assay. Based on multi-locus sequences of ITS (internal transcribed spaces), GAPDH (glyceral-dehyde-3-phosphate dehydrogenase), CAL (calmodulin) and TUB2 (β -tubulin 2), concatenated phylogenetic trees were generated by maximum likelihood and Bayesian inference. Two phylogenetic trees showed consistent results in which the pathogenic strains were grouped in the clade as *Colletotrichum siamense* and *C. gloeosporioides*. Together with their morphological characteristics, the pathogenic agents were identified as *C. siamense* and *C. gloeosporioides*. This is the first report of *Colletotrichum* species causing anthracnose disease of *C. alba* in China.

Key words *Cornus alba*; *Colletotrichum siamense*; *Colletotrichum gloeosporioides*; multi-locus sequence; pathogenicity

红瑞木 Cornus alba L. (异名 Swida alba L.), 别名凉子木,山茱萸科山茱萸属 Cornus 落叶花灌 木,在我国原产于东北、华北、西北和华东地区,在韩 国、日本、蒙古、俄罗斯及欧洲多国也有分布^[1]。红 瑞木叶片绿色,花与果实常白色,茎杆颜色亮丽,多 呈金黄或紫红色,四季可分别观赏叶、花、果实及枝 干,是我国园林造景中广泛应用的彩色树种之一。 国内关于红瑞木的病害研究相当有限,仅有葡萄座 腔菌 Botryosphaeria dothidea^[2] 和 拟 盘 多 毛 孢 Pestalotiopsis sp.^[3]引起红瑞木枝干溃疡病的报 道。其同科近缘属的一些植物病害相对较多,尤以 山茱萸炭疽病(dogwood anthracnose)最受重视,其 致病菌为 Discula destructiva。1979年在美国发现 一种病原菌侵染太平洋四照花 Cynoxylon nuttallii (异名 Cornus nuttallii),其叶部病斑与炭疽菌属 Colletotrichum 导致的炭疽病症状极为相似,随后该病原 菌被鉴定为毁灭性座盘孢 Discula destructiva^[4]。 2003年以后,德国、意大利等国也相继报道本土毁灭

通信作者 E-mail:qingquan.luo@outlook.com

收稿日期: 2019-06-18 修订日期: 2019-07-19

基金项目: 国家林业和草原局科技发展中心生物安全与遗传资源管理项目(KJZXSA2019027)

性座盘孢 D. destructiva 引起大花四照花 Cynoxylon florida (异名 Cornus florida)炭疽病病例^[4]。国内尚未见红瑞木炭疽病的相关病害报道。

双壳属 Diplocarpon、痂囊腔菌属 Elsinoe、炭疽菌 属 Colletotrichum 的许多真菌可以导致炭疽病。其 中,炭疽菌属真菌是导致植物炭疽病最主要的病原菌 种类,被认为是世界第八大重要病原真菌^[5]。炭疽菌 Colletotrichum spp. 寄主范围广泛,包括许多粮食作 物、经济作物及风景园林植物。准确鉴定炭疽菌对于 炭疽病的防控和进一步研究有重要意义。20世纪90 年代以前,炭疽菌的分类鉴定主要依赖于分生孢子、 附着胞的形状及大小,刚毛、菌核和厚垣孢子形态及 有无等形态特征^[6]。然而,由于该属真菌的纯培养特 征、孢子及附着胞形态不稳定,受寄主、环境等影响较 大,常出现近似或相同的形态学特征,单纯依靠形态 学难以准确鉴定[7]。随着分子生物学的发展,基于核 糖体 DNA 内转录间隔区(rDNA-ITS)的分子鉴定技 术被引入炭疽菌属真菌的分类鉴定^[8]。但是,ITS序 列分析在该属的系统学研究中仍有不足,不能有效区 分近缘种[9-11]。随后,基于多基因序列联合分析,辅 以生态、地理、形态数据的分类鉴定手段逐渐被广泛 用于炭疽菌属系统分类研究^[12]。许多学者采用了不 同的多基因序列组合,如rDNA-ITS、3-磷酸甘油醛脱 氢酶(glyceral-dehyde-3-phosphate dehydrogenase,GAP-DH)、几丁质合酶(CHS-1)、肌动蛋白(ACT)、组蛋白 H3(histone3, H3)和 β 微管蛋白 2(β -tubulin 2, TUB2)、谷氨酰胺合成酶(glutamine synthetase,GS)、 钙调蛋白(calmodulin,CAL),对尖孢炭疽菌 C. acutatum、博宁炭疽菌 C. boninense、東状炭疽菌 C. dematium、毁灭炭疽菌 C. destructivum、长直孢炭疽菌 C. gigasporum、圆孢炭疽菌 C. orbiculare, 白蜡树炭疽 菌 C. spaethianum 和平头炭疽菌 C. truncatum 复合种 进行了大量系统分类研究^[8-10,13-16]。Weir 等利用包括 GS、CAL 和超氧化物歧化酶 2(superoxide dismutase 2,SOD2)在内的共8个基因对胶孢炭疽菌C.gloeosporioides 复合种进行分析,区分出 22 个种^[11]。

'芽黄'红瑞木 C. alba 'Bud's Yellow'在上海 迪士尼乐园有广泛种植,在对其进行病害调查时发 现,其病叶普遍有炭疽病典型特征。本研究对病原 菌进行分离,基于多基因序列,分别用最大似然法 (maximum likelihood,ML)和贝叶斯分析法(Bayesian inference, BI)进行系统进化分析,辅以形态特征观 察,确定'芽黄'红瑞木炭疽病的病原菌有 2 个,分别 是暹罗炭疽菌 C. siamense 和胶孢炭疽菌 C. gloeosporioides,以期为该病的诊断及防治提供理论依据。

1 材料与方法

1.1 采样与分离

病叶于 2015 年采自上海迪士尼乐园新植 1 年 的红瑞木植株,参照方中达的组织分离法将采集的 病叶进行病原菌分离^[17]。取病叶病健交界处约 4 mm×4 mm 组织块,70%乙醇消毒 2~3 s,5%次 氯酸钠表面消毒 2 min,在无菌水中漂洗 3 次后晾 干,置于含 0.2%乳酸的马铃薯葡萄糖琼脂培养基 (PDA)平板上,25℃恒温培养,3~5 d 后挑取组织块 周围的菌丝转皿培养及单孢分离。对分离物编号并 转至斜面培养基上,于 4℃保存。

1.2 致病性测定

将分离获得的菌株在 PDA 培养基上活化后转 接于新鲜 PDA 平板上,于 25℃培养待用。

1.2.1 孢子悬浮液接种法

用无菌水从培养 7~14 d 的 PDA 平板上洗下 分生孢子,配制成浓度为 10⁶ 个/mL 的孢子悬浮液。 剪取植株上部完全展开且大小一致的健康叶片进行 接种(图 1 a~b)。用接种针刺伤叶片,于创伤处接种 6 μL 孢子悬浮液,将接种的叶片置于培养皿中室温保 湿培养。设置清水对照,每个菌株设 3 个重复。

1.2.2 菌丝块接种法

菌株转接于 PDA 平板上培养 3~5 d,用直径 7 mm 打孔器在菌落边缘打取菌饼。选取株高1 m 左右红瑞木植株上部活体健康叶片,用接种针刺伤 后,将菌饼正面朝向伤口,用无菌水浸湿的脱脂棉保 湿。设置清水对照,每个菌株设3个重复(每重复 1 株供试植株)。接种后将植株置于温室 26℃~ 28℃,湿度 50%~80%条件培养,每天观察发病情 况。接种后若植株发病则取发病部位重新分离。

1.3 病原菌形态特征观察

确定为致病菌后将菌株转移至 PDA 平板上, 25℃恒温培养至菌丝长满平板,观察菌落形态特征, 每天用十字交叉法测量菌落直径,持续 7 d,记录生 长速度。收集分生孢子,于光学显微镜下观察分生 孢子形态,并测量其长和宽。

1.4 多基因联合鉴定

1.4.1 基因组 DNA 提取

参照罗卿权等的平板刮取菌丝法收集菌丝体^[2],于研钵中加入液氮研磨后采用改良的 CTAB

法提取基因组 DNA^[18]。

1.4.2 目的基因的 PCR 扩增及测序

对病原菌的 ITS、GAPDH、CAL、TUB2 基因扩 增和测序。所用通用引物序列及 PCR 反应条件参 考文献^[19-22],引物由生工生物工程(上海)股份有限 公司合成(表 1)。

25 μL PCR 反应体系: 10×PCR Buffer 2.5 μL、 25 mmol/L dNTPs 2 μL、25 mmol/L MgCl₂ 1.5 μL、 20 μmol/L正向和反向引物各0.5 μL、50 ng/μL DNA 模板 0.5 μL、5 U/μL *rTaq* 0.125 μL、ddH₂O 补足至 25 μL。反应程序:94℃预变性5 min;94℃变性 15 s, 51~57℃退火 30 s(退火温度依据引物决定),72℃延伸 45 s,35 个循环;72℃延伸 5 min。

用1%琼脂糖凝胶电泳检测 PCR 产物,并用 DNA凝胶回收试剂盒切胶纯化,纯化后的 DNA 片 段连接至 pMD19-T 载体,转化入 JM109 大肠杆菌 感受态细胞,挑取阳性单克隆,送生工生物工程(上 海)股份有限公司测序。

Table	1	Primers	used	in	this	study
rabic		I I IIICI S	uscu		UIII O	Study

基因 Gene	引物 Primer	序列(5'-3') Sequence	参考文献 References				
ITS	ITS1	TCCGTAGGTGAACCTGCGG	[19]				
	ITS4	TCCTCCGCTTATTGATATGC					
GAPDH	GDF1	GCCGTCAACGACCCCTTCATTGA	[20]				
	GDR1	GGGTGGAGTCGTACTTGAGCATGT					
CAL	CL1	GARTWCAAGGAGGCCTTCTC	[21]				
	CL2	TTTTTGCATCATGAGTTGGAC					
TUB2	β t2a	GGTAACCAAATCGGTGCTGCTTTC	[22]				
	βt2b	ACCCTCAGTGTAGTGACCCTTGGC					

1.4.3 序列比对及多基因系统进化树构建

将 ITS、GAPDH、CAL、TUB2 基因片段的测序结 果提交至 GenBank,并在 NCBI 数据库中进行 BLAST。

从 GenBank 下载同源性较高的序列及其对应的模式菌株序列(表 2)。用 MEGA X 软件将测序 所得的病原菌 ITS、GAPDH、CAL、TUB2 序列及下 载序列分别进行 ClustalW 比对,并截齐两端。使用 Sequence Matrix 1.80 软件按 ITS-GAPDH-CAL-TUB2 顺序首尾连接即得到多基因联合序列。ML 进化树模式分析后,在 MEGA X 软件中使用最大似 然法(ML)构建多基因系统进化树,bootstrap 值设 为1000^[33]。

	Table 2 Details of	the Content	richum isolates us	sed in this study		
种类	菌株	Ge	enBank 序列号 Ge	enBank accession nun	nber	参考文献
Species	Isolate	ITS	GAPDH	TUB2	CAL	References
C. aenigma	ICMP 18608*	JX010244	JX010044	JX010389	JX009683	[11]
C. aesch ynomenes	ICMP 17673*	JX010176	JX009930	JX010392	JX009721	[11]
C. alatae	ICMP 17919*	JX010190	JX009990	JX010383	JX009738	[11]
C. alienum	ICMP 12071*	JX010251	JX010028	JX010411	JX009654	[11]
亚洲炭疽菌 C. asianum	ICMP 18580*	FJ972612	JX010053	JX010406	FJ917506	[23]
博宁炭疽菌 C. boninense	MAFF 305972*	HM585399	HM585386	HM585421	HM582004	[24]
	CBS 123755*	JQ005153	JQ005240	JQ005588	JQ005674	[9]
C. clidemiae	ICMP 18658*	JX010265	JX009989	JX010438	JX009645	[11]
果生炭疽菌 C. fructicola	ICMP 18613	JX010167	JX009998	JX010388	JX009675	[11]
	ICMP 18581*	JX010165	JX010033	JX010405	FJ917508	[11]
胶孢炭疽菌 C. gloeosporioides	ICMP 17821*	JX010152	JX010056	JX010445	JX009731	[25]
	ICMP 12939	JX010149	JX009931	—	JX009728	[11]
	HRM-SA5	MK530178	MK532362	MK532366	MK532364	本研究
C. jasminigenum	MFLUCC 100273*	HM131513	HM131499	HM153770	HM131494	[11]
香蕉炭疽菌 C. musae	CBS 116870*	JX010146	JX010050	HQ596280	JX009742	[26]
	ICMP 19119*	JX010146	JX010050	HQ596280	JX009742	[11]
C. murrayae	GZAAS5.09506	JQ247623	JQ247609	JQ247644	JQ247596	[27]
	GZAAS5. 09538	JQ247632	JQ247608	JQ247645	JQ247597	[27]
C. nupharicola	ICMP 18187*	JX010187	JX009972	JX010398	JX009663	[11]
C. queenslandicum	ICMP 1778*	JX010276	JX009934	JX010414	JX009691	[11]
C. salsolae	ICMP 19051*	JX010242	JX009916	JX010403	JX009696	[11]
暹罗炭疽菌 C. siamense	ICMP 18578*	JX010171	JX009924	JX010404	FJ917505	[11,28]
	ICMP 19118*	HM131511	HM131497	JX010415	JX009713	[11,28]
	ICMP 18642*	JX010278	JX010019	JX010410	JX009709	[11,28]
	IIDM CAA	MIZE20177	MUE2222(1	MUE222265	MUEDDOG	

表 2 本研究所用炭疽菌菌株及其序列¹⁾ Table 2 Details of the *Colletotrichum* isolates used in this study

续表 2 Table 2(Continued)						
种类	菌株	GenBank 序列号 GenBank accession number				
Species	Isolate	ITS	GAPDH	TUB2	CAL	References
C. theobromicola	ICMP 18649*	GU994360	JX010006	GU994477	JX009591	[11]
	ICMP 17957	JX010289	JX009962	JX010380	JX009597	[11]
热带炭疽菌 C. tropicale	ICMP 18653*	JX010264	JX010007	JX010407	JX009719	[11,29]
平头炭疽菌 C. truncatum	CBS 151. 35 *	GU227862	GU228254	GU228156	—	[30]
	CBS 195.32	GU227865	GU228257	GU228159	—	[30]
C. vini ferum	GZAAS 5. 08601*	JN412804	JN412798	JN412813	JQ309639	[27]
	GZAAS 5.08608	JN412802	JN412800	JN412811	JN412782	[31]
C. xanthorrhoeae	ICMP 17903*	JX010261	JX009927	JX010448	JX009653	[11,32]

1) * 模式菌株。本研究中新提交菌株及序列号标示为粗体。C. murravae 为暹罗炭疽菌 C. siamense^[16]异名。

* Ex-type strain, New strains and accession numbers produced in this study are in **bold**, *C. murra vae* is synonymous with *C. siamense*^[16].

同时,在PhyloSuite v1.1.14软件中对截齐后各基 因序列按同样顺序拼接,用 PartitionFinder 2 对联合序 列分段进行进化模型分析,使用 MrBayes 3.3.6 基于贝 叶斯分析法(BI)构建多基因系统进化树^[34]。软件基于 马尔可夫链蒙特卡洛算法(Markov chain Monte Carlo, MCMC),运行代数2000000,抽样频率为100,其余为 默认参数。平头炭疽菌C. truncatum作为外群。

结果与分析 2

2.1 分离菌株的致病性测定

将分离得到的菌株用孢子悬浮法、菌丝块接种法 分别接种到离体叶片和活体叶片上,仅接种菌株 HRM-SA4, HRM-SA5 后发病, 清水对照均未发病。

菌株 HRM-SA4、HRM-SA5 采用孢子悬浮法针 刺接种离体叶片4~5d后,接种叶片上出现不规则块 状或近圆形深褐色病斑(图 1a~b)。菌丝块接种活体 叶片 10~14 d 后,叶片上均可观察到典型的炭疽病病 斑(图 1c~d), 病斑背部均有橘黄色分生孢子堆(图 1c),两菌株致病症状无明显差异。对病斑进行再分 离,能获得与原接种菌株形态一致的病原菌。根据柯 赫氏法则,试验中分离得到的 HRM-SA4、HRM-SA5 均为红瑞木炭疽病的病原菌。

a: 离体叶片接种菌株HRM-SA4; b: 离体叶片接种菌株HRM-SA5; c: 活 体叶片接种HRM-SA4; d: 活体叶片接种HRM-SA5

a: Detached leaf inoculated with HRM-SA4; b: Detached leaf inoculated with HRM-SA5; c: Live leaf inoculated with HRM-SA4; d: Live leaf inoculated with HRM-SA5

图 1 红瑞木离体和活体叶片接种后炭疽病症状

Fig. 1 Anthracnose symptoms on detached and live leaves

of Cornus alba after inoculation

2.2 病原菌的形态特征观察

病原菌菌株 HRM-SA4 和 HRM-SA5 在 PDA 平 板上菌落特征分别见图 2 和图 3。两菌株菌丝总体呈 等径辐射生长,地毯状平铺。HRM-SA4 菌株初期为白 色絮状,后气生菌丝逐渐变为灰白色,背面为暗绿色或 黑色(图 2a~b);HRM-SA5 菌株初期为白色,后逐渐变 为深棕色,能产生明显的橘红色分生孢子黏液,菌落背 面橘红色(图 3a~b)。分生孢子均为单胞,透明,圆柱 形,具油球,两端钝圆为主,少量一端钝圆(图 2c,3c)。 随机选取视野内 100 个分生孢子测量其大小, HRM-SA4 菌株分生孢子大小为(8.16~17.97) um×(2.98~ 5.86) μ m(平均 14.76 μ m×4.70 μ m, n=100); HRM-SA5 菌株分生孢子大小为(11.68~18.73) µm×(4.03~ 6.10)µm(平均 15.57 µm×4.94 µm,n=100)。采用十 字交叉法每天测量菌株菌落直径,结果显示,菌株 HRM-SA4 和 HRM-SA5 菌落生长速度分别为(7.1± 0.9)mm/d和(11.0±0.2)mm/d。从病原菌的上述形 态特征,初步确定两个菌株为炭疽菌属的两个不同种。

a~b: 在PDA上培养10 d 的菌落正反面; c: 分生孢子 a-b: Front and back views of colonies cultured on PDA for 10 d; c: Conidia

图 2 菌株 HRM-SA4 的形态特征

Fig. 2 Cultural and morphological characteristics of HRM-SA4

a~b: 在PDA上培养10 d 的菌落正反面; c: 分生孢子 a-b: Front and back views of colonies cultured on PDA for 10 d; c: Conidia

图 3 菌株 HRM-SA5 的形态特征

Fig. 3 Cultural and morphological characteristics of HRM-SA5

2.3 病原菌的多基因序列联合分析

將菌株 HRM-SA4 和 HRM-SA5 的 ITS、 GAPDH、CAL、TUB2 基因片段的测序结果提交至 GenBank 数据库,获取登录号依次为 MK530177、 MK530178、MK532361、MK532362、MK532363、 MK532364、MK532365、MK532366(表 2)。测序结 果经 BLAST 比对显示菌株 HRM-SA4 和 HRM-SA5 的 ITS 序列与胶孢炭疽菌 C. gloeos porioides、 暹罗炭疽菌 C. siamense、C. aenigma 等数十种炭疽 菌模式菌株 ITS 序列一致性高达 98%~99.87%; HRM-SA4 和 HRM-SA5 的 GAPDH、CAL 序列与 胶孢炭疽菌、C. musae、C. aenigma 等数十种炭疽菌 株的 TUB2 序列与胶孢炭疽菌、C. melanocaulon、 C. dianesei 等菌株的序列一致性多在 82%~99%之间。结果表明,菌株 HRM-SA4 和 HRM-SA5 的 ITS、GAPDH、CAL、TUB2 基因序列均与炭疽菌属 同源性最高,但由于近缘种较多,且序列差异较小, BLAST 序列比对难以鉴定到种。

基于 ITS、GAPDH、CAL 和 TUB2 等 4 个基因 联合序列,以最佳模型 TN93+G,构建了包含两个 菌株的多基因 ML 系统进化树(图 4)。在该系统进 化树中, HRM-SA4 和 HRM-SA5 分别与暹罗炭疽 菌 C. siamense 和胶孢炭疽菌 C. gloeos porioides 聚 集在一起,形成明显的 2 个分支,自展值分别为 95 和 99。

图 4 基于 ITS, GAPDH, CAL 和 TUB2 多基因序列的炭疽菌属 ML 系统进化树 Fig. 4 ML phylogenetic tree based on ITS, GAPDH, CAL and TUB2 sequences of Collectotrichum spp.

New strains in this study are in bold

0.10

New strains in this study are in bold

3 讨论

山茱萸炭疽病最早于北美发现,是一种毁灭性 病害,在条件适宜时,能导致以太平洋四照花、大花 四照花为主的山茱萸科花灌木大面积死亡,造成巨 大经济损失^[4]。Brown 等关于多种山茱萸科植物对 山茱萸炭疽病的抗性研究表明,红瑞木 C. alba 也能 被毁灭性座盘孢 D. destructiva 侵染^[35]。但在自然 条件下,仅发现太平洋四照花、大花四照花、四照花 Cornus kousa 受到该菌侵染为害^[36]。2013年, Mihaela 再次证明了人工接种毁灭性座盘孢 D. destructiva 可致使包含'芽黄'红瑞木 C. alba 'Bud's Yellow'在内的许多山茱萸科植物感病;而在自然条 件下仅四照花属近缘种 C. florida、C. nuttallii、 C. kousa 对毁灭性座盘孢 D. destructiva 感病^[4]。 Miller 等采用实时定量 PCR 技术对 1909 年-2011 年 间采集自加拿大、墨西哥、美国、中国、日本等9个国家

的 70 个山茱萸标本进行病原菌分子检测,结果显示,源 自日本的灯台树 C. controversa、美国的大花四照花 C. florida、中国的毛梾 C. walteri 等标本显示阳性,3个 源自中国的红瑞木标本均未检出 D. destructiva^[37]。本 研究在红瑞木叶部炭疽病病原菌分离过程中,也未分 离到毁灭性座盘孢或疑似菌株。

此外,早在1948年,Jenkins等发现痂囊腔菌属 真菌 Elsinoecorni 能导致大花四照花 C. florida 斑 点炭疽病(spot anthracnose),叶部症状多为1~ 2 mm的坏死斑^[38];1965年,Toole 等和 Lambe 等报 道胶孢炭疽菌 C. gloeos porioides 侵染大花四照 花^[39-40]; Strandberg 等以及 Shi 等学者的研究显示, 胶孢炭疽菌 C. gloeos porioides 和尖孢炭疽菌 C. acutatum 均能引起大花四照花叶部病害,甚至导 致枝干坏死^[41-42]。Mihaela 也从山茱萸属及近缘属 植物病叶分离得到炭疽菌属 Colletotrichum 的许多 病原真菌[4]。国内,任国兰等最早于1987年报道了

胶孢炭疽菌 C. gloeos porioides 引起山茱萸 Cornus officinalis 炭疽病^[43]。与其他山茱萸科炭疽病类 似,本研究证实了引起上海迪十尼'芽黄'红瑞木炭 疽病的病原菌为暹罗炭疽菌 C. siamense 和胶孢炭 疽菌C. gloeos porioides,均属于胶孢炭疽菌复合种 C. gloeosporioides complex。这是暹罗炭疽菌 C. siamense 和胶孢炭疽菌 C. gloeos porioides 引起 红瑞木炭疽病的首次报道,该发现将为红瑞木炭疽 病的诊断和防治提供一定的理论依据。尽管 Strandberg 等^[41]的研究显示,在炭疽菌属导致的炭 疽病中,尖孢炭疽菌 C. acutatum 占大花四照花炭疽 病的致病菌比例较大,本研究未能分离到该菌。这 可能由于寄主不同,且受环境、地域等影响,炭疽病 常一病多菌,优势种群也有差异[44]。由于多种病原 真菌侵染山茱萸属及近缘属植物导致的炭疽病症状 相似,易混淆^[4],下一步研究将扩大采样范围及数 量,明确国内红瑞木上炭疽菌的种类及优势种群,进 一步排查是否有毁灭性座盘孢 D. destructiva 或 E. corni等其他真菌导致的炭疽病发生。

由于炭疽菌形态简单,种间形态差异较小,部分 形态特征受环境等因素影响较大,传统形态学往往 难以区分该属的相似种或近缘种[45],多基因联合分 析能更准确反映和有效区分炭疽菌属内亲缘关 系^[16,46]。本研究中,首先采用序列 BLAST 比对,初 步将病原菌的种类限定于炭疽菌属 Colletotrichum。 再基于 ITS、GAPDH、CAL 和 TUB2 多基因联合, 同时采用了最大似然法和贝叶斯分析法构建多基因 系统进化树。结果显示,在两种进化树中(图 4~5), 菌株 HRM-SA4、HRM-SA5 均分别与暹罗炭疽菌 C. siamense 和胶孢炭疽菌 C. gloeosporioides 较好地聚 合在同一个分支;两种进化树具有较为一致的拓扑结 构,其中胶孢炭疽菌 C. gloeos porioides、博宁炭疽菌 C. boninense 和平头炭疽菌 C. truncatum 3 个复合种内 炭疽菌分别聚集于一个大分支,与 Javawardena 等和 Marin-felix 等构建的炭疽菌属复合种聚类结果相 符[16,46]。形态学观察也显示,两种病原菌形态特征符 合胶孢炭疽菌复合种基本特征[16,44]。

本研究对分离得到的菌株 HRM-SA4 和 HRM-SA5 进行离体及活体叶片致病性测定,接种叶片均 能发病,且活体叶片发病症状与自然发病症状相同, 分离得到的病原菌与原接种菌一致,根据柯赫氏法 则,证明这两种病原菌均为引起红瑞木炭疽病的病 原菌。通过 BLAST 序列比对以及基于 ITS、GAP-DH、CAL 和 TUB2 基因的最大似然法和贝叶斯分 析法多基因序列联合分析,辅以形态学观察,将病原 菌菌株 HRM-SA4 鉴定为暹罗炭疽菌 C. siamense, HRM-SA5 鉴定为胶孢炭疽菌 C. gloeos porioides。 红瑞木作为一种应用日益广泛的城市景观植物,我 国对其病害研究还很有限,进一步深入研究和全面 了解其病原菌种类、分布及发生规律,进而采取针对 性防控措施可有效减轻景观及经济损失。

参考文献

- WU Zhengyi, RAVENH P, HONG Deyuan, et al. Flora of China. volume14 (*Apiaceae* through *Ericaceae*) [M]. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press, 2005.
- [2] 罗卿权,徐颖,刘美. 红瑞木溃疡病病原菌的鉴定[J]. 植物保护,2012,38(4):115-117.
- [3] 罗卿权,路广亮,王凤,等.'芽黄'红瑞木枝干溃疡病病原菌 的鉴定及药剂防治[J].植物保护,2017,43(3):122-128.
- [4] MIHAELA S. Dogwood anthracnose caused by Discula destructiva on Cornus spp. in Canada [D]. Guelph: University of Guelph, 2013.
- [5] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13 (4): 414-430.
- [6] SUTTON B C. The Coelomycetes. fungi imperfecti with pycnidia, acervuli and stromata [M]. Kew UK: Commonwealth Mycological Institute, 1980: 1-696.
- [7] THAUNG M.M. Coelomycete systematics with special reference to Collectorichum [J]. Mycoscience, 2008, 49(6): 345 - 350.
- [8] CANNON P F, DAMM U, JOHNSTON P R, et al. Colletotrichum-current status and future directions [J]. Studies in Mycology, 2012, 73 (1): 181-213.
- [9] DAMM U, CANNON P F, WOUDENBERG J H C, et al. The Collectrichum boninense species complex [J]. Studies in Mycology, 2012, 73(1): 1 - 36.
- [10] DAMM U, CANNON P F, WOUDENBERG J H C, et al. The *Colletotrichum acutatum* species complex [J]. Studies in Mycology, 2012, 73(1): 37 - 113.
- [11] WEIR B S, JOHNSTON P R, DAMM U. The Collectorichum gloeosporioides species complex [J]. Studies in Mycology, 2012, 73(1): 115 - 180.
- [12] CAI Lei, HYDEK D, TAYLORP W J, et al. A polyphasic approach for studying *Collectrichum* [J]. Fungal Diversity, 2009, 39(1): 183 204.
- [13] DAMM U, CANNONP F, LIU Fang, et al. The Collectrichum orbiculare species complex: important pathogens of field and weeds [J]. Fungal Diversity, 2013, 61(1): 29-59.
- [14] DAMM U, OCONNEL R J, GROENEWALD J Z, et al. The Collectorichum destructivum species complex-hemibiotrophic pathogens of forage and field crops [J]. Studies in Mycology, 2014, 79: 49-84.
- [15] LIU Fang, CAI Lei, CROUSP W, et al. The *Collectotrichum* gigasporum species complex [J]. Persoonia: Molecular Phy-

logeny and Evolution of Fungi, 2014, 33: 83-97.

- [16] JAYAWARDENA R S, HYDE K D, DAMM U, et al. Notes on currently accepted species of *Colletotrichum* [J]. Mycosphere, 2016, 7 (8): 1192 - 1260.
- [17] 方中达. 植病研究方法[M]. 第2版. 北京:中国农业出版社, 1998: 122-143.
- [18] NICHOLSON P, PARRY D W. Development and use of a PCR assay to detect *Rhizoctonia cerealis*, the cause of sharp eyespot in wheat [J]. Plant Pathology, 1996, 45 (5): 872-883.
- [19] WHITET J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//INNES M A, GELFAND D H, SNINSK Y et al. PCR protocols: a guide to methods and applications. USA: Academic Press, 1990: 315 322.
- [20] GUERBER J C, LIU Bo, CORRELL J C, et al. Characterization of diversity in *Collectotrichum acutatum* sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility [J]. Mycologia, 2003, 95 (5): 872 - 895.
- [21] O'DONNELL K, NIRENBERG H I, AOKI T, et al. A multigene phylogeny of the *Gibberella fujikuroi* species complex: Detection of additional phylogenetically distinct species [J]. Mycoscience, 2000, 41(1): 61 – 78.
- [22] GLASS N L, DONALDSON G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes [J]. Applied and Environmental Microbiology, 1995, 61(4): 1323 – 1330.
- [23] PRIHASTUTI H, CAI Lei, CHEN Hang, et al. Characterization of *Collectorichum* species associated with coffee berries in northern Thailand [J]. Fungal Diversity, 2009, 39(1): 89 - 109.
- [24] YANG Youlian, CAI Lei, YU Ziniu, et al. Collectotrichum species on Orchidaceae in southwest China [J]. Cryptogamie Mycologie, 2011, 32(3): 229-253.
- [25] LIU Fang, DAMM U, CAI Lei, et al. Species of the Collectrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae [J]. Fungal Diversity, 2013, 61(1): 89 - 105.
- [26] SU Yuanying, NOIREUNG P, LIU Fang, et al. Epitypification of *Colletotrichum musae*, the causative agent of banana anthracnose [J]. Mycoscience, 2011, 52(6): 376 - 382.
- [27] PENG Lijuan, SUN Tao, YANG Youlian, et al. *Colletotri-chum* species on grape in Guizhou and Yunnan provinces, China
 [J]. Mycoscience, 2013, 54(1): 29 41.
- [28] PHOULIVONG S, CAI Lei, CHEN Hang, et al. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits [J]. Fungal Diversity, 2009, 44(1): 33 - 43.
- [29] ROJASE I, REHNERS A, SAMUELS G J, et al. Colletotrichum gloeosporioides s. l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogen from asymptomatic endophytes [J]. Mycologia, 2010, 102(6): 1318 - 1338.
- [30] DAMMU, WOUDENBERGJ H C, CANNONP F, et al. Colletotrichum species with curved conidia from herbaceous hosts
 [J]. Fungal Diversity, 2009, 39: 280 - 282.

- [31] HYDE K D, NILSSONR H, ALIASS A, et al. One stop shop: backbones trees for important phytopathogenic genera: I
 [J]. Fungal Diversity, 2014, 67(1): 21 - 125.
- [32] SHIVASR G, BATHGATE J, PODGER F D. Collectorichum xanthorrhoeae sp. nov. on Xanthorrhoea in Western Australia
 [J]. Mycological Research, 1998, 102(3): 280 - 282.
- [33] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
- [34] ZHANG Dong, GAO Fangluan, JAKOVLIĆ I, et al. Phylo-Suite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Molecular Ecology Resources, 2017, 20(1): 348-355.
- [35] BROWN D A, WINDHAM M T, TTRIGLANO R N. Resistance to dogwood anthracnose among *Cornus* species [J]. Journal of Arboriculture, 1996, 22: 83 - 86.
- [36] DAUGHTREY M L, HIBBEN C R. Dogwood anthracnose: a new disease threatens two native *Cornus* species [J]. Annual Review of Phytopathology, 1994, 32(1): 61 - 73.
- [37] MILLERS S, MASUYA H, ZHANG Jian, et al. Real-time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia [J/OL]. PLoS ONE, 2016, 11 (4): e0154030. DOI:10.1371/journal.pone.0154030.
- [38] JENKINS A E, MILLER J H, HEPTING G H. Spot anthracnose and other leaf and petal spots of flowering dogwood [J]. National Horticultural Magazine, 1953, 32: 57-69.
- [39] TOOLE E R, FILER T H. *Colletotrichum gloeosporioides* on dogwood [J]. The Plant Disease Reporter, 1965, 49(4): 351.
- [40] LAMBE R C, JUSTIS S F. Special: dogwood diseases [J]. Ornamentals Northwest Archives, 1978, 2(3): 7-10.
- [41] STRANDBERG J O, CHELLEMID O. Limb dieback of flowering dogwood caused by *Colletotrichum acutatum* [J]. Proceedings of the Florida State Horticultural Society, 2002, 115: 259 - 262.
- [42] SHI A, KANTARTZI S K, MMBAGA M T, et al. PCRbased markers for detection of *Colletotrichum acutatum* and *C. gloeosporioides* in flowering dogwood (*Cornus florida*) [J]. Australasian Plant Pathology, 2008, 37(1): 65 - 68.
- [43] 任国兰,蒋维宇,郑铁民,等.山茱萸炭疽病(Colletotrichum gloeosporioides)的研究[J].河南农业大学学报,1987,21
 (3):300-307.
- [44] HAN Yongchao, ZENG Xiangguo, XIANG Fayun, et al. Distribution and characteristics of *Collectrichum* spp. associated with anthracnose of strawberry in Hubei, China [J]. Plant Disease, 2016, 100(5); 996 - 1006.
- [45] 向梅梅,张云霞,刘霄.炭疽菌属真菌分类的研究进展[J].仲 恺农业工程学院学报,2017,30(1):59-66.
- [46] MARIN-FELIX Y, GROENEWALD J Z, CAI Lei, et al. Genera of phytopathogenic fungi: GOPHY 1 [J]. Studies in Mycology, 2017, 86: 99-216.