Preparation of *Paenibacillus polymyx* wa
ttable powder

CHEN Ru¹, CAO Xuemei¹, WU Haixia¹, LI Huan¹, CHEN Xinyuan¹,
BAO Zenghai¹, MA Guizhen¹, WANG Junqiang²

(1. Jiangsu Ocean University, Lianyang 222005, China;
2. Jiangsu Frey Agrochemicals Co., Ltd., Lianyang 222005, China)

Abstract *Paenibacillus polymyx* was used to study the composition of wettable powder and its field control effect on melon wilt by single factor test in laboratory and field experiments. The optimum formula of the wettable powder was: 70% bacterial powder with bentonite as carrier, 14% sodium alginate as stabilizer, 8% sucrose fatty acid ester as wetting agent and 8% polyvinyl alcohol as dispersant. The number of living bacteria in wettable powder was 1.23×10⁹ cfu/g, water content 6%, dispersion rate 75%, wetting time 48 s and heterogeneous bacteria rate 0%. Seven different methods were used to prevent melon wilt and the results showed that the comprehensive control effect on melon wilt was up to 84.9% by wettable powder. The preparation had a good control effect against melon wilt, and can be popularized and applied as a medicament for controlling melon wilt.

Key words *Paenibacillus polymyx*; wettable powder; screening; field control
芽胞菌 LM-3 菌株抗菌蛋白对稻瘟病菌和水稻纹枯病菌的抑制作用，并研究了菌悬液浸种、浸芽和浇苗 3 种处理方法对水稻的促生作用和对超氧化物歧化酶、过氧化氢酶和过氧化物酶 3 种保护酶的诱导表达作用。陈海英等[9]研究表明多黏类芽胞杆菌 CP7 菌株分泌抑菌物质对荔枝霜霉疫菌具有很强的抑制作用。2002 年，美国环境保护署 (EPA) 将多黏类芽胞杆菌列为商业上可应用的微生物种之一[10]。

近年来有关防治植物病害的微生物剂研究报道日益增加。由华东理工大学与上海泽元海洋生物科技有限公司联合创制的多黏类芽孢杆菌可湿性粉剂对番茄、辣椒、茄子及烟草青枯病具有较好的防治效果。据报道[11]，多黏类芽孢杆菌对番茄青枯病的防治效果可达 85%。目前，国内外甜瓜枯萎病的生物防治主要是利用海洋微生物进行防治，而采用海洋微生物防病的报道较少。图 4 所示为海洋多黏类芽胞杆菌芽胞菌株由本实验室在连云港海域中分离纯化并保存的生物相容性，具有较强的抑制作用。徐玲等[12]以海洋多黏类芽胞杆菌的发酵液为种子液培养基，通过室内盆栽试验，确定解淀粉芽胞杆菌为最佳载体和助剂以制备成可湿性粉剂。多黏类芽胞杆菌则可湿性粉剂载体和助剂的筛选

1.4 种子液制备

将海洋多黏类芽胞杆菌接种到 PDA 培养基上，培养基上活化 24 h。在无菌条件下用接种环挑取海洋多黏类芽胞杆菌于装有 60 mL 种子液培养基的 250 mL 三角瓶中，28℃，180 r/min 振荡培养 16 h。调整菌液浓度为 10^8 cfu/mL，作发酵用种子液。

1.5 可湿性粉剂载体和助剂的筛选

1.5.1 不同载体和助剂与海洋多黏类芽胞杆菌生物相容性的测定

将制备好的种子液取 6 mL，分别接入装有 60 mL 含 4%载体和助剂的 PD 培养基的 250 mL 三角瓶中，在 28℃，180 r/min 的条件下培养 24 h，用稀释涂布计数法检测培养液中的菌量。每个处理重复 3 次。根据活菌数量判断不同载体和助剂与海洋多黏类芽胞杆菌的生物相容性。

1.5.2 可湿性粉剂载体和助剂种类的筛选

载体对海洋多黏类芽胞杆菌吸附量的测定：分别向 100 mL 烧杯中加入不同载体各 2 g，将海洋多黏类芽胞杆菌的发酵液体液滴加到烧杯中，滴加的同时用玻璃棒搅拌。当载体粉末开始凝结成团且不散开时，停止向其中继续滴加发酵液。记录滴加到载体中的发酵液的量。每种载体重复 3 次。

载体和助剂悬浮率测定采用国家标准农药可湿
性粉剂悬浮率测定方法[17]。

载体和助剂润湿性采用国家标准农药可湿性粉剂润湿时间测定方法[18]。

1.5.3 可湿性粉剂加工载体与助剂配比及用量筛选

筛选出的稳定剂与海洋多黏类芽胞杆菌的新鲜干粉按 1:5, 1:10, 1:20 的质量比混合均匀。分别在放置 5, 10, 15 d 时称取不同配比的试样测定活菌数。确定稳定剂的配比。

将筛选出的最佳湿润剂、分散剂和展展剂按不同的比例混合，粉碎机混合均匀后过 325 目筛，测定其润湿时间和悬浮率，筛选出湿润剂、分散剂和展展剂的最佳质量配比。将筛选出的最佳质量配比的分散剂和湿润剂按 2%、4%、6%、8%、10%、12%、14%、16%、18% 的不同用量添加到海洋多黏类芽胞杆菌的新鲜菌粉中。综合考虑润湿性和悬浮效果，筛选出湿润剂、分散剂和展展剂的最佳用量。

1.6 可湿性粉剂的制备及性质测定

1.6.1 菌粉的制备

海洋多黏类芽胞杆菌在 101 酵罐中按优化的发酵条件进行发酵，将筛选出的载体以及絮凝作用的物质添加到发酵液中，进行吸附，板框过滤后，得到菌饼，自然晾干粉碎后得到菌粉。

1.6.2 可湿性粉剂的加工及其性质测定

按照优化的海洋多黏类芽胞杆菌菌粉与助剂比例加入优化筛选出的稳定剂、湿润剂和分散剂，混合均匀，粉碎后过 325 目筛，得到海洋多黏类芽胞杆菌可湿性粉剂，按照国家可湿性粉剂的标准测定悬浮率、润湿时间和含水量，将制得的海洋多黏类芽胞杆菌可湿性粉剂存放于温室条件下（25℃），120 d 前每 15 d, 120 d 后每 30 d 取样，采用平板计数法测定保存不同时间样品的活菌数。

1.7 海洋多黏类芽胞杆菌可湿性粉剂不同处理方法防治甜瓜枯萎病的田间药效试验

选择甜瓜枯萎病发病较重地区试验地进行田间药效试验。试验小区按随机区组排列，每小区移栽 2 行甜瓜，行距为 65 cm，株距为 29 cm。在盆栽试验不同方法最适用药浓度的基础上，设计拌种、拌土、灌根、拌种＋拌土、拌种＋灌根、拌种＋拌土＋灌根、拌土＋灌根等 7 种施药方法。拌种法：取甜瓜种质量 3% 的海洋多黏类芽胞杆菌可湿性粉剂对甜瓜种子进行拌种后催芽，接种至土壤中。拌土法：制备质量分数为 30% 的含药土壤，采用下铺上盖的处理方式将含生防制剂的土壤添加到甜瓜床的土壤中，种植甜瓜时铺上 500 g 含药剂土壤后再播种露白的种子，种子上再盖上 500 g 含药剂土壤。灌根法：甜瓜生长至子叶期时用 20% 海洋多黏类芽胞杆菌可湿性粉剂溶液进行灌根处理[19]。7 种处理使用以上 3 种方法及浓度分别对甜瓜进行处理。每种处理 3 次重复，分别以 3% 多抗霉素可湿性粉剂（山东鲁抗生物农药有限责任公司）（CK1）和清水（CK2）作对照，最后 1 次施药后 10 d 进行第 1 次调查，之后每隔 10 d 进行 1 次药效调查。记录发病率和病情指数，计算防效。甜瓜收获后不同小区单独测产，分别记录单瓜质量、每株果实数及 20 株产量，计算保产率。

病情指数 = \sum (\text{各级病状数} \times \text{各级代表值}) \times 100;

防病效果 = \frac{\text{CK 病情指数} - \text{处理病情指数}}{\text{CK 病情指数}} \times 100%；

保产率 = \frac{\text{处理产量} - \text{CK 产量}}{\text{CK 产量}} \times 100%。

2 结果与分析

2.1 可湿性粉剂载体和助剂的筛选

2.1.1 载体的筛选

添加 4% 皂土的发酵液中的活菌数最高，为 1.22×10^{10} cfu/mL，在与菌株一起混合培养的载体中，皂土与海洋多黏类芽胞杆菌的生物相容性最好，其对海洋多黏类芽胞杆菌具有促生作用（表 1）。

表 1 添加不同载体的海洋多黏类芽胞杆菌发酵 24 h 的活菌数

<table>
<thead>
<tr>
<th>载体</th>
<th>活菌数 / cfu·mL^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白对照 CK</td>
<td>1.65×10^6 e</td>
</tr>
<tr>
<td>凹凸棒土 Attapulgite</td>
<td>3.07×10^6 c</td>
</tr>
<tr>
<td>活性白土 Activated clay</td>
<td>5.15×10^6 e</td>
</tr>
<tr>
<td>皂土 Bentonite</td>
<td>1.22×10^{10} a</td>
</tr>
<tr>
<td>碳酸氢钙 Calcium bicarbonate</td>
<td>1.00×10^7 e</td>
</tr>
<tr>
<td>高岭土 Kaolin</td>
<td>2.21×10^8 d</td>
</tr>
<tr>
<td>硅藻土 Diatomite</td>
<td>6.98×10^8 b</td>
</tr>
<tr>
<td>钙基膨润土 Ca-bentonite</td>
<td>2.88×10^9 c</td>
</tr>
</tbody>
</table>

1) 同列数据后不同小写字母表示差异显著（P<0.05）。表 2～表 6，表 8～表 9 同。

Different lowercase letters in the same column represent significant difference (P<0.05). The same is applied for Table 2～Table 6. Table 8 and Table 9.
本试验中所选载体对海洋多黏类芽胞杆菌的吸附效果差异显著，其中皂土对海洋多黏类芽胞杆菌菌液的吸附效果最好，平均吸附量可达2.333 mL/g，其吸附量显著多于其他载体（表2）。添加皂土的制剂润湿时间最短，为25 s，悬浮率也最高，为87%（图1）。综上所述，本试验选择皂土作为海洋多黏类芽胞杆菌可湿性粉剂的载体。

1.3 湿润剂的筛选

不同的稳定剂与海洋多黏类芽胞杆菌生物相容性有明显差异。与菌株混合培养的稳定剂中，添加4%海藻酸钠的发酵液活菌数最高，为1.76×10^10 cfu/mL（表3），显著高于对照，说明该稳定剂对多黏类芽胞杆菌具有促生作用。

不同稳定剂对制剂性能有明显的影响。添加不同稳定剂的润湿时间由短到长的顺序为：硬脂酸钙＜海藻酸钠＜荧光素钠＜腐植酸＜硬脂酸锌＜黄原胶，添加硬脂酸钙的润湿时间最短，为63 s；海藻酸钠、荧光素钠次之。海藻酸钠的悬浮率最高，为81%，悬浮效果最佳；其次是荧光素钠、硬脂酸钙（图2）。综合考虑稳定剂与海洋多黏类芽胞杆菌的生物相容性、润湿时间和悬浮率，选择海藻酸钠作为制剂的稳定剂。

| 稳定剂 | 活菌数/ cfu·mL^{-1} | 可湿性粉剂

表2 不同载体对海洋多黏类芽胞杆菌发酵液吸附量的影响

<table>
<thead>
<tr>
<th>载体</th>
<th>吸附量/mL·g^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>活性白土</td>
<td>(0.497±0.004)b</td>
</tr>
<tr>
<td>凹凸棒土</td>
<td>(0.339±0.008)b</td>
</tr>
<tr>
<td>钙基膨润土</td>
<td>(0.378±0.019)b</td>
</tr>
<tr>
<td>皂土</td>
<td>(2.333±0.104)a</td>
</tr>
<tr>
<td>硅藻土</td>
<td>(0.805±0.487)b</td>
</tr>
<tr>
<td>高岭土</td>
<td>(0.354±0.011)b</td>
</tr>
<tr>
<td>碳酸氢钠</td>
<td>(0.310±0.045)b</td>
</tr>
</tbody>
</table>

图1 不同载体对制剂性能的影响

Fig. 1 Effects of different carriers on the performance of the formulation

表3 添加不同稳定剂的海洋多黏类芽胞杆菌发酵24 h的活菌数

<table>
<thead>
<tr>
<th>稳定剂</th>
<th>活菌数/ cfu·mL^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白对照 CK</td>
<td>1.65×10^9 b</td>
</tr>
<tr>
<td>硬脂酸钙</td>
<td>3.17×10^7 d</td>
</tr>
<tr>
<td>海藻酸钠</td>
<td>1.76×10^10 a</td>
</tr>
<tr>
<td>荧光素钠</td>
<td>3.99×10^7 d</td>
</tr>
<tr>
<td>黄原胶 Xanthan gum</td>
<td>5.54×10^7 d</td>
</tr>
<tr>
<td>腐植酸 Humic acid</td>
<td>3.38×10^8 c</td>
</tr>
<tr>
<td>硬脂酸钙 calcium stearate</td>
<td>2.49×10^9 b</td>
</tr>
</tbody>
</table>

图2 不同稳定剂对制剂性质的影响

Fig. 2 Effects of different stabilizers on the properties of the formulation

2.1.2 稳定剂的选择

不同的稳定剂与海洋多黏类芽胞杆菌生物相容性有明显差异。与菌株混合培养的稳定剂中，添加4%海藻酸钠的发酵液活菌数最高，为1.76×10^{10} cfu/mL（表3），显著高于对照，说明该稳定剂对多黏类芽胞杆菌具有促生作用。

不同稳定剂对制剂性能有明显的影响。添加不同稳定剂的润湿时间由短到长的顺序为：硬脂酸钙＜海藻酸钠＜荧光素钠＜腐植酸＜硬脂酸锌＜黄原胶，添加硬脂酸钙的润湿时间最短，为63 s；海藻酸钠、荧光素钠次之。海藻酸钠的悬浮率最高，为81%，悬浮效果最佳；其次是荧光素钠、硬脂酸钙（图2）。综合考虑稳定剂与海洋多黏类芽胞杆菌的生物相容性、润湿时间和悬浮率，选择海藻酸钠作为制剂的稳定剂。

表3 添加不同稳定剂的海洋多黏类芽胞杆菌发酵24 h的活菌数

<table>
<thead>
<tr>
<th>稳定剂</th>
<th>活菌数/ cfu·mL^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白对照 CK</td>
<td>1.65×10^9 b</td>
</tr>
<tr>
<td>硬脂酸钙</td>
<td>3.17×10^7 d</td>
</tr>
<tr>
<td>海藻酸钠</td>
<td>1.76×10^10 a</td>
</tr>
<tr>
<td>荧光素钠</td>
<td>3.99×10^7 d</td>
</tr>
<tr>
<td>黄原胶 Xanthan gum</td>
<td>5.54×10^7 d</td>
</tr>
<tr>
<td>腐植酸 Humic acid</td>
<td>3.38×10^8 c</td>
</tr>
<tr>
<td>硬脂酸钙 calcium stearate</td>
<td>2.49×10^9 b</td>
</tr>
</tbody>
</table>

图2 不同稳定剂对制剂性质的影响

Fig. 2 Effects of different stabilizers on the properties of the formulation
表 4 添加不同湿润剂的海洋多黏类芽胞杆菌发酵 24 h 的活菌数

Table 4 Number of Paenibacillus polymyxa viable bacteria fermented for 24 h with different humectants

<table>
<thead>
<tr>
<th>湿润剂</th>
<th>活菌数 / cfu•mL⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viable bacteria</td>
</tr>
<tr>
<td>空白对照 CK</td>
<td>1.65 × 10⁸ c</td>
</tr>
<tr>
<td>吞息 80 Tween-80</td>
<td>6.63 × 10⁸ b</td>
</tr>
<tr>
<td>木质素磺酸钠</td>
<td>8.65 × 10⁸ a</td>
</tr>
<tr>
<td>薄壁多糖酸酯</td>
<td>8.98 × 10⁸ a</td>
</tr>
<tr>
<td>脂肪醇聚氧乙烯酯 25</td>
<td>5.43 × 10⁸ bc</td>
</tr>
<tr>
<td>Fatty alcohol polyoxyethylene ether-25</td>
<td>3.87 × 10⁸ c</td>
</tr>
<tr>
<td>十二烷基聚氧乙烯醚 DBS</td>
<td>5.00 × 10⁸ bc</td>
</tr>
</tbody>
</table>

图 3 不同湿润剂对制剂性质的影响

Fig. 3 Effects of different wetting agents on the properties of the formulation

2.1.4 分散剂、展着剂的筛选

添加 4% 不同分散剂与海洋多黏类芽胞杆菌混合培养，其生物相容性有明显的不同。由表 5 可以看出，供试分散剂聚乙烯醇、羧甲基纤维素钠和柱层析硅胶与海洋多黏类芽胞杆菌有较好的生物相容性，对菌株的生长都表现了一定的促进作用；而的各种处理与海洋多黏类芽胞杆菌的生物相容性较差。

表 5 添加不同分散剂、展着剂的海洋多黏类芽胞杆菌发酵 24 h 的活菌数

Table 5 Number of Paenibacillus polymyxa viable bacteria fermented for 24 h with different dispersing agents and spreading agents

<table>
<thead>
<tr>
<th>分散剂/展着剂</th>
<th>活菌数 / cfu•mL⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viable bacteria</td>
</tr>
<tr>
<td>空白对照 CK</td>
<td>1.65 × 10⁸ cd</td>
</tr>
<tr>
<td>聚乙烯醇 Polyvinyl alcohol</td>
<td>3.65 × 10⁸ a</td>
</tr>
<tr>
<td>羧甲基纤维素钠 Carboxymethylcellulose sodium</td>
<td>1.77 × 10⁸ c</td>
</tr>
<tr>
<td>柱层析硅胶 Column chromatography silica gel</td>
<td>2.40 × 10⁸ b</td>
</tr>
<tr>
<td>薄层层析硅胶 Thin layer chromatography silica gel</td>
<td>1.53 × 10⁸ d</td>
</tr>
</tbody>
</table>

添加不同分散剂的制剂悬浮率均比较高，表明分散剂能显著提高海洋多黏类芽胞杆菌可湿性粉剂的悬浮性。添加分散剂聚乙烯醇的悬浮率最高，为 80%，悬浮时间最短，为 10 s。添加展着剂柱层析硅胶和薄层层析硅胶的悬浮率较低，湿润性差。因此在制剂制备的过程中不添加展着剂（表 6）。

表 6 不同的分散剂、展着剂对制剂性质的影响

Table 6 Effects of different dispersing agents and spreading agents on the properties of the formulation

<table>
<thead>
<tr>
<th>分散剂/展着剂</th>
<th>粉率</th>
<th>悬浮率/%</th>
<th>湿润时间 / s</th>
<th>湿润率</th>
<th>湿润时间 / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚乙烯醇 Polyvinyl alcohol</td>
<td>(80±5.58) a</td>
<td>(10±1.58) c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>羧甲基纤维素钠 Carboxymethylcellulose sodium</td>
<td>(76±7.00) a</td>
<td>(86±8.00) b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柱层析硅胶 Column chromatography silica gel</td>
<td>(34±6.08) b</td>
<td>(16±2.00) c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>薄层层析硅胶 Thin layer chromatography silica gel</td>
<td>(25±1.00) b</td>
<td>(128±14.46) a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

综合考虑以上筛选结果，选择聚乙烯醇作为海洋多黏类芽胞杆菌可湿性粉剂的分散剂。

2.2 可湿性粉剂载体与助剂配比及用量筛选

2.2.1 稳定剂配比的筛选

菌粉与稳定剂海藻酸钠的配比不同，保存相同天数活菌数的减少量也不同。存放 15 d 时，不添加稳定剂海藻酸钠的制剂中活菌数最少，为 9.07 × 10⁸ cfu/g，添加不同配比稳定剂海藻酸钠的制剂活菌数均明显高于空白对照，说明添加稳定剂海藻酸钠提高了制剂的稳定性。当菌粉与稳定剂的配比为 5:1 时，制剂存放 15 d 时活菌数最多，说明当菌粉与稳定剂的配比为 5:1 时，稳定性最佳。因此可以确定菌粉与稳定剂的最优配比为 5:1（表 7）。
2.2 湿润剂与分散剂的质量配比对制剂性质的影响
随着分散剂聚乙烯醇的增加，制剂的悬浮率提高，同时制剂的润湿时间随之变长（表 8）。说明湿润剂与分散剂的质量配比对制剂性质有显著影响，分散剂质量的增加显著提高了制剂的悬浮率，同时湿润剂质量的减少显著延长了润湿时间。
综合考虑润湿性与悬浮性，选择湿润剂与湿润剂的质量配比为 5:5。

2.2.3 湿润剂与分散剂的用量对制剂性质的影响
湿润剂与分散剂的用量对制剂性质有明显的影响（表 9）。随着湿润剂和分散剂添加量的增加，制剂的悬浮率随之提高，润湿时间变短。说明增加湿润剂与分散剂的用量将提高制剂的悬浮性和润湿性。同时考虑到湿润剂和分散剂用量的增加将导致制剂有效成分含量的减少，在本试验中，选择湿润剂与分散剂的用量为 16%，此时制剂的悬浮率为 82%，润湿时间为 20 s。

2.3 海洋多黏类芽胞杆菌可湿性粉剂的制备及性质测定

2.3.1 海洋多黏类芽胞杆菌菌粉的制备
结果如表 10 所示，自然晾干粉碎后，制备的菌粉含菌量达 2.60 × 10^{11} cfu/g，含水率 6%，收率 86.6%。自然晾干过程中芽胞死亡率低于 5%，杂菌率 0。

表 7 不同湿润剂和分散剂对海洋多黏类芽胞杆菌制剂活菌数的影响

<table>
<thead>
<tr>
<th>海洋多黏类芽胞杆菌：海藻酸钠</th>
<th>活菌数/cfu·g⁻¹ Viable bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paeubacillus polymyxa</td>
<td>0 d</td>
</tr>
<tr>
<td>空白 CK</td>
<td>2.14×10⁹</td>
</tr>
<tr>
<td>5:1</td>
<td>2.14×10⁹</td>
</tr>
<tr>
<td>10:1</td>
<td>2.14×10⁹</td>
</tr>
<tr>
<td>20:1</td>
<td>2.14×10⁹</td>
</tr>
</tbody>
</table>

表 8 不同湿润剂和分散剂对制剂性质的影响

<table>
<thead>
<tr>
<th>聚乙二醇：蔗糖脂肪酸酯</th>
<th>细度／% Fineness</th>
<th>悬浮率／% Suspension rate</th>
<th>润湿时间／s Wetting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl alcohol</td>
<td>1:9</td>
<td>98</td>
<td>(65±3.06)e</td>
</tr>
<tr>
<td>2:8</td>
<td>98</td>
<td>(71±2.00)de</td>
<td>(6±0.6)d</td>
</tr>
<tr>
<td>3:7</td>
<td>98</td>
<td>(74±5.5)1d</td>
<td>(7±1.0)c</td>
</tr>
<tr>
<td>4:6</td>
<td>98</td>
<td>(79±7.51)c</td>
<td>(9±1.5)bc</td>
</tr>
<tr>
<td>5:5</td>
<td>98</td>
<td>(85±2.00)bc</td>
<td>(9±1.0)bc</td>
</tr>
<tr>
<td>6:4</td>
<td>98</td>
<td>(86±6.24)b</td>
<td>(10±1.7)b</td>
</tr>
<tr>
<td>7:3</td>
<td>98</td>
<td>(89±3.61)ab</td>
<td>(10±2.5)b</td>
</tr>
<tr>
<td>8:2</td>
<td>98</td>
<td>(90±6.56)ab</td>
<td>(11±1.5)ab</td>
</tr>
<tr>
<td>9:1</td>
<td>98</td>
<td>(92±2.65)a</td>
<td>(12±1.0)a</td>
</tr>
</tbody>
</table>

表 9 湿润剂与分散剂的用量对制剂性质的影响

<table>
<thead>
<tr>
<th>蔗糖脂肪酸酯：聚乙二醇／%</th>
<th>细度／% Fineness</th>
<th>悬浮率／% Suspension rate</th>
<th>润湿时间／s Wetting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacrose fatty acid ester</td>
<td>2</td>
<td>98</td>
<td>(35±4.51)f</td>
</tr>
<tr>
<td>Polyvinyl alcohol</td>
<td>4</td>
<td>98</td>
<td>(38±2.65)f</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>(46±5.00)e</td>
<td>(47±1.2)a</td>
</tr>
<tr>
<td>8</td>
<td>98</td>
<td>(59±3.61)d</td>
<td>(40±2.5)b</td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td>(68±4.58)c</td>
<td>(32±2.6)c</td>
</tr>
<tr>
<td>12</td>
<td>98</td>
<td>(76±1.00)bc</td>
<td>(22±3.6)d</td>
</tr>
<tr>
<td>14</td>
<td>98</td>
<td>(78±2.65)b</td>
<td>(22±7.0)d</td>
</tr>
<tr>
<td>16</td>
<td>98</td>
<td>(82±1.15)b</td>
<td>(20±2.6)d</td>
</tr>
<tr>
<td>18</td>
<td>98</td>
<td>(90±2.31)a</td>
<td>(16±6.6)d</td>
</tr>
</tbody>
</table>
表 10 海洋多黏类芽孢杆菌 1 t 发酵罐发酵记录

<table>
<thead>
<tr>
<th>发酵液含菌量/×10^11 cfu•mL^{-1}</th>
<th>芽孢产率/%</th>
<th>载体用量/kg</th>
<th>湿菌含量/×10^11 cfu•g^{-1}</th>
<th>干燥时/天</th>
<th>干燥后菌量/×10^11 cfu•g^{-1}</th>
<th>收率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viable count in fermentation broth</td>
<td>Spore production rate</td>
<td>Carrier dosage</td>
<td>Moisture content of wet cake</td>
<td>Drying time</td>
<td>Viable count in bacterial powder</td>
<td>Yield</td>
</tr>
<tr>
<td>4.41</td>
<td>80</td>
<td>50</td>
<td>3</td>
<td>2.60</td>
<td>6</td>
<td>86.6</td>
</tr>
</tbody>
</table>

2.3.2 海洋多黏类芽孢杆菌可湿性粉剂的制备及其性能检测

测得该制剂的润湿时间为 48 s，悬浮率为 75%，含水量 6%，制剂 100% 通过 325 目筛，活菌数为 2.36×10^{11} cfu/g，杂菌率为 0。达到了国家对农药可湿性粉剂的质量要求。

由表 11 可以看出，海洋多黏类芽孢杆菌可湿性粉剂的活菌含量随着储存时间的延长有所下降，但减少的速度较缓慢，保存 360 d 后活菌数减少较少，说明该菌株的可湿性粉剂稳定性较好。

表 11 海洋多黏类芽孢杆菌可湿性粉剂保存不同时间的含菌数

<table>
<thead>
<tr>
<th>时间/d Time</th>
<th>活菌数/×10^11 cfu•g^{-1}</th>
<th>Viable bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.360</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.318</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.312</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2.304</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.316</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.286</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.233</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>2.208</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>2.196</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2.177</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>2.154</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>2.133</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>2.117</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>2.095</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.076</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>2.041</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>1.997</td>
<td></td>
</tr>
</tbody>
</table>

2.4 海洋多黏类芽孢杆菌可湿性粉剂剂不处理方法防治甜瓜枯萎病的田间效果

间施药试验结果如表 12 所示（最后一次施药后每隔 10 d 调查一次），不同处理方法对枯萎病的防治效果不同，综合应用拌种、拌土、灌根的防治效果最好，拌土+灌根的防治效果次之，防效分别为 84.9% 和 79.2%。前者的防效高于 CK1（3% 多抗霉素）。

表 12 不同处理方法对甜瓜枯萎病的防病效果

<table>
<thead>
<tr>
<th>处理方法 Treatment</th>
<th>病情指数 Disease index</th>
<th>防病效果/% Disease prevention effect</th>
<th>保产效果/% Productive effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>水 (CK2) Water (CK2)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3% 多抗霉素 WP (CK1) polyoxins 3% WP (CK1)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>拌种 Seed dressing</td>
<td>53</td>
<td>83.0</td>
<td>5.9</td>
</tr>
<tr>
<td>拌土 Mixed soil</td>
<td>9</td>
<td>47.2</td>
<td>2.3</td>
</tr>
<tr>
<td>灌根 Root irrigation</td>
<td>19</td>
<td>64.2</td>
<td>5.1</td>
</tr>
<tr>
<td>拌种+拌土 Seed dressing+mixed soil</td>
<td>21</td>
<td>60.4</td>
<td>4.2</td>
</tr>
<tr>
<td>拌土+灌根 Mixed soil+root irrigation</td>
<td>12</td>
<td>77.4</td>
<td>5.4</td>
</tr>
<tr>
<td>拌种+灌根 Seed dressing+root irrigation</td>
<td>19</td>
<td>67.9</td>
<td>4.6</td>
</tr>
<tr>
<td>拌土+灌根 Mixed soil+root irrigation</td>
<td>17</td>
<td>69.2</td>
<td>6.1</td>
</tr>
<tr>
<td>拌种+拌土+灌根 Seed dressing+mixed soil+root irrigation</td>
<td>11</td>
<td>84.9</td>
<td>6.7</td>
</tr>
</tbody>
</table>

3 讨论

可湿性粉剂作为微生物制剂的主要剂型，相比于液体制剂更容易运输和贮存，与其他固体制剂相比，有效成分、湿润性等多方面都有提高，防病范围更广。可湿性粉剂性能评价常用指标包括有效成分、悬浮率、湿润性、含水量和细度等，其中悬浮率是最重要的性能指标，其次为湿润性和有效成分。载体虽然是一种惰性材料，但不同种类的载体对活体微生物的影响较大。王剑等[20]、贺振宁等[21]研究发现硅藻土作为生防菌的载体时，生物相容性较好，不会影响活菌生长。本研究显示土与海洋多黏类芽孢杆菌有较好的生物相容性，但硅藻土会抑制其菌落的生长。因此，对不同微生物会产生不一样的效果，所以研制不同微生物可湿性粉剂时，必须针对其所用菌株而选择相关载体和助剂，提高其生防效果。载体和助剂的选择对可湿性粉剂的悬浮率、湿润时间和有效成分均有影响。
响。刘盼西等 [22] 通过助剂的筛选和混料设计的试验方法优化了海洋芽孢杆菌 B-9987 可湿性粉剂的制剂配方，其悬浮率为 73.13%，润湿时间为 100 s。由华中农业大学与上海海洋生物技术有限公司联合创制的多黏类芽孢杆菌可湿性粉剂产品的悬浮率为 76.10%，润湿时间为 95 s，活菌含量为 5×10^{10} cfu/g [11]。本研究制得的海洋多黏类芽孢杆菌可湿性粉剂的悬浮率为 75%，润湿时间为 48 s，活菌数为 2.36×10^{10} cfu/g，悬浮率与上述文献报道比较接近，而润湿时间则减少了一半，可能与可湿性粉剂中所选用的载体和助剂有关；本研究制得的可湿性粉剂是通过大罐发酵干燥浓缩得到，其含菌量远高于同类产品。

本文研制的海洋多黏类芽孢杆菌可湿性粉剂对甜瓜枯萎病的田间综合防效高达 84.9%，高于 3% 多抗霉素。使用该菌剂后，甜瓜产量增加，显示该菌株具有良好的应用前景，本研究为该菌株可湿性粉剂的工业生产奠定了基础。

参考文献
[1] 南宁航，朱子成，王学征，等。甜瓜种质资源菌期对枯萎病和白粉病的抗性评价[J]。中国蔬菜，2016(1)：37 - 44。
[3] 邹立飞，余小兰，邹幼南，等。抗甜瓜枯萎病链霉菌 D2 菌株发酵条件的优化[J]。南方农业学报，2018, 49(5)：905 - 911。
[9] 陈海英，林健荣，廉华，等。多粘类芽孢杆菌 CP7 对荔枝霜霉病菌的抗菌活性及其作用机制[J]。园艺学报，2010, 37(7)：1047 - 1056。
[10] BENT E, BREUIL C, ENEBAK S, et al. Surface colonization of lodgepole pine (Pinus contorta var. latifolia) roots by Pseudo-
monas fluorescens and Paenibacillus polymyxa under antibiotic conditions [J]. Plant and Soil, 2002, 241(2)：187 - 196。
[12] 李磊，许敏，王美琴。生防菌脱淀粉粉芽孢杆菌 Ht-q6 可湿性粉剂的研制及对番茄枯萎病的田间防效[J]。中国生物防治学报，2018, 34(5)：738 - 745。
[14] 马桂珍，王淑芳，暴增海，等。多粘类芽孢杆菌 Lc-9 菌株对番茄早疫病的抑病作用研究[J]。中国蔬菜，2010(12)：55 - 59。
[16] GB/T 14825-2006。农药可湿性粉剂悬浮率测定方法[S]。北京：中国标准出版社，2007。
[18] 李欢，曹雪梅，陈茹，等。海洋多黏类芽孢杆菌 Lc-9 菌株粉剂对黄瓜的促生防病作用[J]。河南农业科学，2017, 46(12)：65 - 69。
[19] 徐艳，孙宝利，战瑞，等。浅谈农药可湿性粉剂的质量提升[J]。现代农药，2009, 8(1)：7 - 11。
[20] 王剑，王楠，高冠明，等。200 亿芽孢杆菌枯草芽孢杆菌可湿性粉剂的研制[J]。农药，2010, 49(7)：486 - 489。
[21] 贺振宁，李海燕，李凤林，等。枯草芽孢杆菌 Bi514 可湿性粉剂的研制及其对小麦纹枯病的防效[J]。河南农业科学，2015, 44(11)：67 - 72。
[22] 刘盼西，李淑兰，李元广，等。海洋芽孢杆菌可湿性粉剂配方的优化[J]。农药学报，2014, 16(2)：206 - 212。

（责任编辑：田 萃）